Nuclear Physics Seminar - Feng Yuan (Lawrence Berkeley National Laboratory) Probing Transverse Momentum Broadening in Heavy Ion Collisions

Feng Yang - Lawrence Berkeley National Laboratory - 4/5/18 Nuclear seminar speaker
April 5, 2018
1:30PM - 2:30PM
4138 Physics Research Building

Date Range
2018-04-05 13:30:00 2018-04-05 14:30:00 Nuclear Physics Seminar - Feng Yuan (Lawrence Berkeley National Laboratory) Probing Transverse Momentum Broadening in Heavy Ion Collisions In this talk, we will discuss the dijet azimuthal de-correlation in relativistic heavy ion collisions as an important probe of the transverse momentum broadening effects in heavy ion collisions. We take into account both the soft gluon radiation in vacuum associated with the Sudakov logarithms and the jet PT-broadening effects in the QCD medium. We find that the Sudakov effects are dominant at the LHC, while the medium effects can play an important role at RHIC energies. This explains why the LHC experiments have not yet observed sizable PT-broadening effects in the measurement of dijet azimuthal correlations in heavy ion collisions. Future investigations at RHIC will provide a unique opportunity to study the PT-broadening effects and help to pin down the underlying mechanism for jet energy loss in a hot and dense medium. 4138 Physics Research Building America/New_York public

In this talk, we will discuss the dijet azimuthal de-correlation in relativistic heavy ion collisions as an important probe of the transverse momentum broadening effects in heavy ion collisions. We take into account both the soft gluon radiation in vacuum associated with the Sudakov logarithms and the jet PT-broadening effects in the QCD medium. We find that the Sudakov effects are dominant at the LHC, while the medium effects can play an important role at RHIC energies. This explains why the LHC experiments have not yet observed sizable PT-broadening effects in the measurement of dijet azimuthal correlations in heavy ion collisions. Future investigations at RHIC will provide a unique opportunity to study the PT-broadening effects and help to pin down the underlying mechanism for jet energy loss in a hot and dense medium.