Ohio State is in the process of revising websites and program materials to accurately reflect compliance with the law. While this work occurs, language referencing protected class status or other activities prohibited by Ohio Senate Bill 1 may still appear in some places. However, all programs and activities are being administered in compliance with federal and state law.

Condensed Matter Seminar - Ehud Altman (UC Berkeley) - A Universal Operator Growth Hypothesis

Ehud Altman (UC Berkeley) 3/25/19 Condensed Matter Seminar speaker
March 25, 2019
1:30 pm - 2:30 pm
4138 Physics Research Building

I will present a hypothesis for the universal properties of operators evolving under Hamiltonian dynamics in many-body systems. The hypothesis states that successive Lanczos coefficients in the continued fraction expansion of the Green's functions grow linearly with rate α in generic systems. The rate α --- observable through properties of simple two point correlation functions  --- governs the exponential growth of operator complexity in a sense I will make precise. Furthermore, I will show that α places a sharp bound on Lyapunov exponents λ≤2α, which generalizes the known universal low-temperature bound λ≤2πT. We illustrate our results in paradigmatic examples such as non-integrable quantum spin chains, the Sachdev-Ye-Kitaev model, and classical models. Finally we use the hypothesis in conjunction with the recursion method to develop a technique for computing diffusion constants in strongly coupled systems.