Ohio State is in the process of revising websites and program materials to accurately reflect compliance with the law. While this work occurs, language referencing protected class status or other activities prohibited by Ohio Senate Bill 1 may still appear in some places. However, all programs and activities are being administered in compliance with federal and state law.

Colloquium - Shengbai Zhang (Rensselaer Polytechnic Institute) - In Pursuit of Novel Two-Dimensional Electronic Structures By First-Principles Theory

November 4, 2014
4:00 pm - 5:00 pm
1080 Physics Research Building - Smith Seminar Room - reception at 3:45 pm in the Atrium

First-principles modeling and simulation are a bridge between theory and experiment. This is especially true in pursue of two-dimensional (2D) materials with normal physical properties. In this talk, I will discuss how to advance the current knowledge of topological insulators for practical applications, in particular, how to design topological edge states with large bulk band gap [1,2] and what silent physics a realistic topological insulator and normal insulator interface may offer. Next, to engage our discussion, I will present some calculated 2D systems and bulk assembly of the 2D systems. My examples include transition metal honeycomb [3], magnetically enhanced electron-phonon coupling [4], and carbon Kagome lattice from graphene, utilizing orbital frustration for better optoelectronic properties [5]. Both fundamental theories and experiments are called upon to deepen our understanding of the simulated results and to experimentally test the validity of the proposed systems.

[1] Y. Li, et al., Phys. Rev. Lett. 109, 206802 (2012).

[2] Y. Li, et al., Phys. Rev. B 87, 245127 (2013).

[3] L. Li, Yet al., Nano Letters 13, 4671 (2013).

[4] S.-Y. Xie, et al., Phys. Rev. B 90, 035447 (2014).

[5] Y. Chen, et al., Phys. Rev. Lett. 113, 085501 (2014) (Editor’s Suggestion).