Ohio State is in the process of revising websites and program materials to accurately reflect compliance with the law. While this work occurs, language referencing protected class status or other activities prohibited by Ohio Senate Bill 1 may still appear in some places. However, all programs and activities are being administered in compliance with federal and state law.

Colloquium - Joel Varley (Lawrence Livermore) - Atomistic Simulations of Point Defects in Semiconductors – Their Behavior and Consequences

Joel Varley
February 8, 2022
3:45 pm - 4:45 pm
Virtual Zoom link below

Atomistic Simulations of Point Defects in Semiconductors – Their Behavior and Consequences

Dr. Joel Varley
Lawrence Livermore National Lab

Virtual only

Faculty Host: Leonard J. Brillson

Joel Varley

Abstract: Deviations from ideality make things interesting and in the case of semiconductors and insulators, imperfections at the atomic scale largely determine their macroscopic optical and electrical properties. First-principles calculations such as those based on density functional theory provide a novel tool to investigate the origins and consequences of these defects, such as the incorporation of unintentional impurities, intentional dopants, or missing or “misplaced” atoms that may occur during growth or processing. We discuss several examples of how theory can be used to understand and complement experimental characterization, particularly in emerging semiconducting oxide materials.

 

Bio: Joel received a B.S. in physics at University of North Carolina at Chapel Hill and a PhD in physics at UCSB, where his work focused on understanding point defects in semiconductors with an emphasis on wide-band-gap semiconducting oxides.  He then worked in the SUNCAT Center for Interface Science and Catalysis at Stanford University on the electrochemical conversion of CO2 and N2 for sustainable fuel and fertilizer production, before joining LLNL in 2011 as part of the Quantum Simulations Group, where he is now staff. While at LLNL, he has continued to study how atomic defects influence the electronic structure and fundamental properties in a number of relevant technologies including photovoltaics, catalysts, batteries, radiation detectors, and next-generation (opto)electronic devices.

 

 

Please use the Zoom link below to attend virtually:

https://osu.zoom.us/j/94858307115?pwd=K0JDMTROWVhIOUp6bU1sU0prZjNUZz09

Meeting ID: 948 5830 7115

Password: PRB1080