Ohio State is in the process of revising websites and program materials to accurately reflect compliance with the law. While this work occurs, language referencing protected class status or other activities prohibited by Ohio Senate Bill 1 may still appear in some places. However, all programs and activities are being administered in compliance with federal and state law.

Colloquium - James Bock (California Institute of Technology) - SPHEREx: An All-sky Infrared Spectral Survey Explorer Satellite

James Bock (California Institute of Technology, 11/20/18 colloquium speaker
November 20, 2018
3:45 pm - 4:45 pm
1080 Physics Research Building - Smith Seminar Room - reception at 3:30 pm in the Atrium

SPHEREx, a mission in NASA's Medium Explorer (MIDEX) program that was selected for a competitive Phase A in August 2017, is an all-sky survey satellite designed to address all three science goals in NASA's astrophysics division, with a single instrument, a wide-field spectral imager.  We will probe the physics of inflation by measuring non-Gaussianity by studying large-scale structure, surveying a large cosmological volume at low redshifts, complementing high-z surveys optimized to constrain dark energy. The origin of water and biogenic molecules will be investigated in all phases of planetary system formation - from molecular clouds to young stellar systems with protoplanetary disks - by measuring ice absorption spectra. We will chart the origin and history of galaxy formation through a deep survey mapping large-scale spatial power in two deep fields located near the ecliptic poles. Following in the tradition of all-sky missions such as IRAS, COBE and WISE, SPHEREx will be the first all-sky near-infrared spectral survey.  SPHEREx will create spectra (0.75 – 4.2 um at R = 40, and 4.2 – 5 um at R = 135) with high sensitivity using a cooled telescope with a wide field-of-view for large mapping speed.  During its two-year mission, SPHEREx will produce four complete all-sky maps that will serve as a rich archive for the astronomy community.  With over a billion detected galaxies, hundreds of millions of high-quality stellar and galactic spectra, and over a million ice absorption spectra, the archive will enable diverse scientific investigations including studies of young stellar systems, brown dwarfs, high-redshift quasars, galaxy clusters, the interstellar medium, asteroids and comets.