Ohio State is in the process of revising websites and program materials to accurately reflect compliance with the law. While this work occurs, language referencing protected class status or other activities prohibited by Ohio Senate Bill 1 may still appear in some places. However, all programs and activities are being administered in compliance with federal and state law.

Colloquium - Ahmet Yildiz (UC Berkeley) The Mechanism of Molecular Motors

Ahmet Yildiz - UC Berkeley
January 24, 2017
4:00 pm - 5:00 pm
1080 Physics Research Building - Smith Seminar Room - reception at 3:45pm in the Atrium

The complexity of eukaryotic cells requires intracellular organization, coordination, and locomotion. To overcome these challenges, cells utilize ATP-driven molecular motors, which transport intracellular components unidirectionally along cytoskeletal tracks. Kinesin and cytoplasmic dynein motors facilitate bidirectional transport of a variety of cargos by moving towards the plus- and minus-ends of microtubules, respectively. Detailed mechanistic models exist for kinesin, but the mechanism and regulation of dynein motility are still emerging. We found that dynein walks on a MT through uncoordinated stepping of its two catalytic domains and its mechanism of action differs significantly from the coordinated hand-over-hand stepping of kinesin. Our recent studies present a robust mechanistic model of processivity and force generation that has altered the established views regarding how motors transport intracellular cargos over long distances.