Artificial neural networks play a prominent role in the rapidly growing field of machine learning and are recently introduced to quantum many-body systems. This talk will focus on using a machine-learning model, the restricted Boltzmann machine (RBM) to describe entangled quantum states. Both short- and long-range coupled RBM will be discussed. For a short-range RBM, the associated quantum state satisfies an entanglement area law, regardless of spatial dimensions. I will present our recently constructed exact RBM models for nontrivial topological phases, including a 1d cluster state and a 2d toric code. For a long-range RBM, the captured entanglement entropy scales linearly with the number of variational parameters in the RBM model, in sharp contrast to the log-scaling in matrix product state representation.
CMT Seminar - Xiaopeng Li (Fudan University) "Machine learning approaches to entangled quantum states"
March 12, 2018
11:30AM
-
12:30PM
1080 Smith Seminar Room
Add to Calendar
2018-03-12 10:30:00
2018-03-12 11:30:00
CMT Seminar - Xiaopeng Li (Fudan University) "Machine learning approaches to entangled quantum states"
Artificial neural networks play a prominent role in the rapidly growing field of machine learning and are recently introduced to quantum many-body systems. This talk will focus on using a machine-learning model, the restricted Boltzmann machine (RBM) to describe entangled quantum states. Both short- and long-range coupled RBM will be discussed. For a short-range RBM, the associated quantum state satisfies an entanglement area law, regardless of spatial dimensions. I will present our recently constructed exact RBM models for nontrivial topological phases, including a 1d cluster state and a 2d toric code. For a long-range RBM, the captured entanglement entropy scales linearly with the number of variational parameters in the RBM model, in sharp contrast to the log-scaling in matrix product state representation.
1080 Smith Seminar Room
OSU ASC Drupal 8
ascwebservices@osu.edu
America/New_York
public
Date Range
2018-03-12 11:30:00
2018-03-12 12:30:00
CMT Seminar - Xiaopeng Li (Fudan University) "Machine learning approaches to entangled quantum states"
Artificial neural networks play a prominent role in the rapidly growing field of machine learning and are recently introduced to quantum many-body systems. This talk will focus on using a machine-learning model, the restricted Boltzmann machine (RBM) to describe entangled quantum states. Both short- and long-range coupled RBM will be discussed. For a short-range RBM, the associated quantum state satisfies an entanglement area law, regardless of spatial dimensions. I will present our recently constructed exact RBM models for nontrivial topological phases, including a 1d cluster state and a 2d toric code. For a long-range RBM, the captured entanglement entropy scales linearly with the number of variational parameters in the RBM model, in sharp contrast to the log-scaling in matrix product state representation.
1080 Smith Seminar Room
America/New_York
public