Ohio State is in the process of revising websites and program materials to accurately reflect compliance with the law. While this work occurs, language referencing protected class status or other activities prohibited by Ohio Senate Bill 1 may still appear in some places. However, all programs and activities are being administered in compliance with federal and state law.

CMT Seminar - Sumilan Banerjee (Weizmann Institute of Science) "Solvable model for a dynamical quantum phase transition from fast to slow scrambling"

Banerjee photo
December 5, 2016
11:30 am - 12:30 pm
4138 Physics Research Building

Alexei Kitaev has recently given a fascinating new interpretation to a solvable model of interacting fermions, which connects it to thermalization, quantum chaos and information scrambling in quantum black holes. The model, now known as the Sachdev-Ye-Kitaev (or SYK) model, consists of fermions on N-sites with all-to-all quartic interactions. The quantum correlations that diagnose the emergence of quantum chaos can be computed exactly in this model. The result is characteri-zation of quantum chaotic behavior through a scrambling rate, or Lyapunov expo-nent, with a universal value 2πkBT/ћ, which saturates the proven upper bound for the process, as do black holes. The SYK model is now understood as a fixed point representative of a certain class of quantum chaotic or thermal behavior. Here we propose a generalized model that allows to extend this classification. In the gener-alized model we couple N sites forming the SYK model to another set of M sites, coupled to each other only by quadratic (hopping) interactions. In the solvable limit of large N,M we find a quantum phase transition tuned by the finite ratio p=M/N from a non Fermi liquid SYK like phase to a Fermi liquid. We show that the entire SYK-like phase shows scrambling at the universal rate 2πkBT/ћ in the low T limit whereas the Fermi-liquid like phase shows much slower scrambling, proportional to T2.