
Analysis of data from the Fermi Gamma-ray Space Telescope revealed a pair of gigantic gamma-ray bubble structures, named the Fermi bubbles, each extending ~10 kpc above and below the Galactic center. I will present new results using five years Fermi-LAT data and multi-wavelength observations of the Fermi bubbles in X-ray, microwave, and radio, including updates from dedicated observations. New observations help us to distinguish hadronic from leptonic origin of the cosmic-ray electrons emitting gamma-ray/microwave emission, and constrain the magnetic field within the Fermi bubbles. I will also show our numerical simulations which demonstrate that the bubble structure could be evidence for past accretion events and outflow from the central supermassive black hole. Furthermore, we recently found evidence for large-scale collimated structure penetrating through the bubbles from the Galactic center from Fermi-LAT data. We have proposed to change the survey strategy of Fermi to increase the exposure at the inner Galaxy by more than a factor of 2. New survey strategy has been initiated since December 2013 and will last for at least one year. I will end up with a discussion of future gamma-ray space missions.