Special Colloquium - Edwin Barnes (University of Maryland) "Understanding and controlling electron-nuclear spin dynamics in a quantum dot"

A close-up of Edwin Barnes, who is looking away from the camera.
January 30, 2014
11:30 am - 12:30 pm
1080 Physics Research Building - Smith Seminar Room

Date Range
2014-01-30 11:30:00 2014-01-30 12:30:00 Special Colloquium - Edwin Barnes (University of Maryland) "Understanding and controlling electron-nuclear spin dynamics in a quantum dot" Abstract:  The realization of a quantum computer would enable us to solve problems that cannot be solved with even the most powerful supercomputers based on classical technology. Building a quantum computer requires precise control over the state of a system possessing only a few quantum degrees of freedom. In this talk, I will focus on a quantum bit represented by a single electron spin trapped in a semiconductor quantum dot. The electron interacts with up to a million nuclear spins in the surrounding material through the hyperfine interaction, leading to a rapid randomization of the electron spin state and a loss of the information it encodes. Understanding how an electron spin evolves in a bath of nuclear spins is an old, challenging problem in theoretical physics known as the Central Spin problem. I will present our recent nonperturbative solution to this problem, which reveals unusual many-body quantum dynamics and offers important lessons on how to reduce the rate of information loss in spin qubits. I will also discuss our new theoretical approach on the dynamic creation of nuclear spin polarization through manipulation of the electron spin, shedding light on recent experimental puzzles.  1080 Physics Research Building - Smith Seminar Room America/New_York public

Abstract:  The realization of a quantum computer would enable us to solve problems that cannot be solved with even the most powerful supercomputers based on classical technology. Building a quantum computer requires precise control over the state of a system possessing only a few quantum degrees of freedom. In this talk, I will focus on a quantum bit represented by a single electron spin trapped in a semiconductor quantum dot. The electron interacts with up to a million nuclear spins in the surrounding material through the hyperfine interaction, leading to a rapid randomization of the electron spin state and a loss of the information it encodes. Understanding how an electron spin evolves in a bath of nuclear spins is an old, challenging problem in theoretical physics known as the Central Spin problem. I will present our recent nonperturbative solution to this problem, which reveals unusual many-body quantum dynamics and offers important lessons on how to reduce the rate of information loss in spin qubits. I will also discuss our new theoretical approach on the dynamic creation of nuclear spin polarization through manipulation of the electron spin, shedding light on recent experimental puzzles.