OSU Physics

Magnetic Resonance Imaging: Interfacial Spin Interaction and Spin Wave Tuning Guanzhong Wu, Inhee Lee, Yang Cheng, Jason Guo, Morgan Hamilton, Suyuan Liu, Fengyuan Yang, P. Chris Hammel

Magnetic Resonance Imaging using Ferromagnetic Resonance Force Microscope

Introduction & motivation

- Understanding interfacial spin interaction in van der Waals (vdW) heterostructure composed of ferromagnet (FM) and twodimensional (2D) materials
- Explore the novel effect of 2D material and vdW heterostructures on the FM magnetization, including spin pumping, spin torque, Rashba-Edelstein effect and topological surface states etc. • Tuning spin wave modes generation in FM nanostructures such as
- internal field step in $Y_3Fe_5O_{12}$ (YIG) thin film, FM/heavy metal(HM) bilayer

Experimental methods

Ferromagnetic Resonance (FMR)

- Spectroscopically study internal fields of ferromagnet (FM)
- Examples of FM internal field sources:
 - Exchange interaction
 - Dipolar interaction
 - Crystalline structure
 - External field
- Resonance condition: $\omega = \gamma H_{eff}$
- Damping: magnetization relaxing to equilibrium
 - Spin-phonon relaxation
 - Spin-magnon relaxation
 - Spin-electron relaxation
 - Spin pumping
- Ferromagnetic Resonance Force Microscopy (FMRFM)

- Cantilever affixed with high coercivity micromagnetic particle • Sensitive force detector of magnetic resonance
- Strong dipolar field of micromagnetic particle can localize spin wave mode (LMs) underneath probe
 - analogous to particle in a box (quantum mechanics)
 - High spatial resolution (100nm)
- Measurement procedure:
 - Constant height spatial scan of across the boundary separating two regions with different magnetic properties Track amplitude changes of cantilever when sample undergoes resonance

SCANNED PROBE MAGNETIC RESONANCE LAB

Results

Au Overlayer Induced Surface Anisotropy

- Spatial FMRFM scans across a boundary separating bare YIG and YIG/Au bilayer resolves a 32 Gauss Resonance field increase in the out-of-plane geometry.
- Experimental results can be repeated with high accuracy using micromagnetic simulation if we set a 32 Gauss decrease of $H_{\rm u}$ in the region of YIG/Au bilayer

Gilbert Damping Real Space Imaging of YIG/Au Spin Pumping

- Real space imaging of n = 1 LM can simultaneously provide the information of internal field and Gilbert damping
- 5nm Au overlayer induce damping increase of $\sim 2 \times 10^{-4}$ due to spin pumping effect.
- Actively working on imaging internal field and damping variation in YIG/2D heterostructures

Spin wave number tunability

2D Constriction Based Spin-Orbit Torque Driven Auto-Oscillators

- converted into a spin current.
- compensating the damping of the system.

Angle Dependence of FMR Spectrum and its Corresponding **Spatial Mode Profile**

Spectral and Spatial Tuning of the Edge and **Bulk Auto-Oscillation Modes**

• The strong spin-orbit interaction allows the charge current to be

• The spin current exerts a spin transfer torque on the magnetization, generating coherent magnetic oscillations at microwave frequencies by

• We tune the spectrum and spatial distribution of edge and bulk modes by altering the field orientation relative to the drive current.