Ohio State Physics Department

A quantitative model of temperature actuated DNA origami nanocaliper constructs

Aerospace Engineering), Ralf Bundschuh (Department of Physics)

Abstract

Manipulating the temperature of an incorporated gold nanoparticle can be used to actuate DNA origami nanocalipers. We develop a physical model of this system that uses partition function analysis to predict the probability that the nanocaliper is open at a given temperature. The model agrees well with experimental data, and the comparison between model and experimental data reveals surprising insights into the nanocaliper-nanoparticle system. Additionally, the model predicts experimental conditions that allow the actuation temperature of the nanocaliper to be tuned over a wide range of temperatures from 20°C to 60°C.

Motivation

Experimental Motivation

- General motivation: to make nanoscale machines
- DNA origami allows design of nanoscale objects • Actuation lets these objects function as parts of a machine [1].
 - Nanocaliper actuation has been achieved previously by changing buffer conditions [2], whereas this method uses a temperature change.
 - The nanoparticle may allow local heating and may affect overhang binding free energy.

Model Motivation

- Deduce microscopic properties of the physical system
- Use model to optimize design in large parameter space

Physical System

- A gold nanoparticle is attached to the top of a nanocaliper.
- PolyT ssDNA strands with 23 bases are attached to the surface of the nanoparticle.
- Complementary polyA strands with 6 to 8 bases are attached to the bottom of the nanocaliper

Kyle Crocker (Department of Physics), Joshua Johnson (Interdisciplinary Biophysics Graduate Program), Carlos Castro (Department of Mechanical and

Model

- The model uses a partition function analysis to calculate the probability that the nanocaliper is open.
- The partition function takes into account the illustrated binding states and free energy shifts.

- Above: model simultaneously fit to trivalent and bivalent data with the energetic parameters allowed to vary.
- $N_{c,max}$ is the maximum number of connections allowed to bind simultaneously.
- The calculated H_S and S_S agree well with typical AA/TT stacking free energies [3-5].

Model prediction

- Using these energetic fit parameters, a prediction is generated for mixed data
 - "mixed 6A/8A": two of the overhangs have 6/8 bases and the other has 8/6
- Next column: prediction agrees well with mixed data

Primary microscopic insight: only 2 overhangs are able to

• Below: the model does not fit the data in the case

N_{c.max} limit hypothesis

• The size of the nanoparticle may impose the constraint on the number of allowed simultaneous connections.

- To test: use of a larger nanoparticle should remove
- this constraint. Nanoparticle diameter is
- about 5 nm

• Overhangs are oriented in a triangle with side distances of 4-5 nm

Model-directed design

- thermodynamics SantaLucia J Jr.
- Walder

Variation of experimental parameters in the model suggests designs optimized to a given temperature.

Below: the model can be used to choose parameters appropriate for any desired actuation temperature (within a few degrees) from 20°C to 60°C.

BIBLIOGRAPHY

Programmable motion of DNA origami mechanisms Alexander E. Marras, Lifeng Zhou, Hai-Jun Su, Carlos E. Castro Proceedings of the National Academy of Sciences Jan 2015, 112 (3), 713-718; DOI:10.1073/pnas.1408869112

Cation-Activated Avidity for Rapid Reconfiguration of DNA Nanodevices Alexander E. Marras, Ze Shi, Michael G. Lindell, III, Randy A. Patton, Chao-Min Huang, Lifeng Zhou, Hai-Jun Su, Gaurav Arya, and Carlos E. Castro ACS Nano **2018** *12* (9), 9484-9494; DOI:10.1021/acsnano.8b04817

A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor

Proc Natl Acad Sci U S A. **1998** *95* (4):1460–1465. doi:10.1073/pnas.95.4.1460

Effects of Sodium lons on DNA Duplex Oligomers: Improved Predictions of Melting Temperatures

Richard Owczarzy,*, Yong You, Bernardo G. Moreira, Jeffrey A. Manthey, Lingyan Huang, Mark A. Behlke, and, and Joseph A. Walder Biochemistry 2004 43 (12), 3537-3554

DOI: 10.1021/bi034621r

Predicting Stability of DNA Duplexes in Solutions Containing Magnesium and **Monovalent Cations**

Richard Owczarzy, Bernardo G. Moreira, Yong You, Mark A. Behlke, and Joseph A.

Biochemistry **2008** *47* (19), 5336-5353 DOI: 10.1021/bi702363u

DMR-1719316