Ohio State nav bar

CCAPP Seminar - Katie Auchettl and Jordan Hanson (CCAPP Fellows)

CCAPP Logo
February 9, 2016
11:30AM - 12:30PM
4138 Physics Research Building

Date Range
Add to Calendar 2016-02-09 11:30:00 2016-02-09 12:30:00 CCAPP Seminar - Katie Auchettl and Jordan Hanson (CCAPP Fellows) Supernova remnants interacting with molecular cloudsKatie AuchettlSupernova remnants (SNRs) are the long lived structures that result from the explosive end of a massive star and they play an important role in the dynamics of the interstellar medium. The shock-front produced by the supernova explosion heats and mixes metal-rich stellar ejecta and swept-up ISM to X-ray emitting temperatures, and are sites in which populations of relativistic particles can be efficiently accelerated to the knee of the Cosmic-ray spectrum. As massive stars tend not travel far from their original birth site, SNRs are usually born in the same dense environment in which their progenitor was born. The interaction between the SNR with this dense molecular material has a profound effect on the morphology and emission properties of these objects. In this talk, I will review the importance of studying these SNRs and their properties. In particular, I will highlight investigations into the high energy emission of these remnants using X-ray and gamma-ray satellites which give an insight into the original progenitor, the properties of the surrounding environment and their abilities to accelerate particles.A review of uhe neutrino detection using the Askaryan effectJordan HansonInteraction of the highest energy cosmic rays with the cosmic microwave background would produce neutrinos with energies of ~1 EeV. The spectrum of these cosmogenic neutrinos is now being constrained, and a generation of experiments based on the Askaryan effect are underway. We review the creation of high-energy cascades created in dielectric materials by electroweak interactions, and discuss how the Askaryan effect in this situation leads to a radio-frequency electromagnetic pulse. Further, we have studied two corrections to the basic approach: the Landau-Pomeranchuk-Migdal (LPM) effect, and the shower form factor. Both effects modify the electromagnetic pulse, and we present an open-source code that attempts to include these effects. A future direction for this work includes using the form factor technique to model the radio emission from extensive air-showers. 4138 Physics Research Building Department of Physics physics@osu.edu America/New_York public

Supernova remnants interacting with molecular clouds
Katie Auchettl

Supernova remnants (SNRs) are the long lived structures that result from the explosive end of a massive star and they play an important role in the dynamics of the interstellar medium. The shock-front produced by the supernova explosion heats and mixes metal-rich stellar ejecta and swept-up ISM to X-ray emitting temperatures, and are sites in which populations of relativistic particles can be efficiently accelerated to the knee of the Cosmic-ray spectrum. As massive stars tend not travel far from their original birth site, SNRs are usually born in the same dense environment in which their progenitor was born. The interaction between the SNR with this dense molecular material has a profound effect on the morphology and emission properties of these objects. In this talk, I will review the importance of studying these SNRs and their properties. In particular, I will highlight investigations into the high energy emission of these remnants using X-ray and gamma-ray satellites which give an insight into the original progenitor, the properties of the surrounding environment and their abilities to accelerate particles.


A review of uhe neutrino detection using the Askaryan effect
Jordan Hanson

Interaction of the highest energy cosmic rays with the cosmic microwave background would produce neutrinos with energies of ~1 EeV. The spectrum of these cosmogenic neutrinos is now being constrained, and a generation of experiments based on the Askaryan effect are underway. We review the creation of high-energy cascades created in dielectric materials by electroweak interactions, and discuss how the Askaryan effect in this situation leads to a radio-frequency electromagnetic pulse. Further, we have studied two corrections to the basic approach: the Landau-Pomeranchuk-Migdal (LPM) effect, and the shower form factor. Both effects modify the electromagnetic pulse, and we present an open-source code that attempts to include these effects. A future direction for this work includes using the form factor technique to model the radio emission from extensive air-showers.